Read an eBird Basic Dataset file using readr::read_delim()
. read_ebd()
reads the EBD itself, while read_sampling()` reads a sampling event data
file.
read_ebd(x, sep = "\t", unique = TRUE, rollup = TRUE)
# S3 method for class 'character'
read_ebd(x, sep = "\t", unique = TRUE, rollup = TRUE)
# S3 method for class 'auk_ebd'
read_ebd(x, sep = "\t", unique = TRUE, rollup = TRUE)
read_sampling(x, sep = "\t", unique = TRUE)
# S3 method for class 'character'
read_sampling(x, sep = "\t", unique = TRUE)
# S3 method for class 'auk_ebd'
read_sampling(x, sep = "\t", unique = TRUE)
# S3 method for class 'auk_sampling'
read_sampling(x, sep = "\t", unique = TRUE)
filename or auk_ebd
object with associated output
files as created by auk_filter()
.
character; single character used to separate fields within a row.
logical; should duplicate grouped checklists be removed. If
unique = TRUE
, auk_unique()
is called on the EBD before returning.
logical; should taxonomic rollup to species level be applied.
If rollup = TRUE
, auk_rollup()
is called on the EBD before returning.
Note that this process can be time consuming for large files, try turning
rollup off if reading is taking too long.
A data frame of EBD observations. An additional column,
checklist_id
, is added to output files if unique = TRUE
, that uniquely
identifies the checklist from which the observation came. This field is
equal to sampling_event_identifier
for non-group checklists, and
group_identifier
for group checklists.
This functions performs the following processing steps:
Data types for columns are manually set based on column names used in the February 2017 EBD. If variables are added or names are changed in later releases, any new variables will have data types inferred by the import function used.
Variables names are converted to snake_case
.
Duplicate observations resulting from group checklists are removed using
auk_unique()
, unless unique = FALSE
.
read_ebd(character)
: Filename of EBD.
read_ebd(auk_ebd)
: auk_ebd
object output from auk_filter()
read_sampling(character)
: Filename of sampling event data file
read_sampling(auk_ebd)
: auk_ebd
object output from auk_filter()
. Must have
had a sampling event data file set in the original call to auk_ebd()
.
read_sampling(auk_sampling)
: auk_sampling
object output from auk_filter()
.
Other import:
auk_zerofill()
f <- system.file("extdata/ebd-sample.txt", package = "auk")
read_ebd(f)
#> # A tibble: 398 × 48
#> checklist_id global_unique_identi…¹ last_edited_date taxonomic_order category
#> <chr> <chr> <chr> <dbl> <chr>
#> 1 G1131664 URN:CornellLabOfOrnit… 2021-03-29 21:2… 20724 species
#> 2 G1131665 URN:CornellLabOfOrnit… 2020-02-01 20:3… 20724 species
#> 3 G1158137 URN:CornellLabOfOrnit… 2018-08-03 18:0… 20674 species
#> 4 G1158138 URN:CornellLabOfOrnit… 2015-02-23 20:1… 20674 species
#> 5 G1277458 URN:CornellLabOfOrnit… 2021-04-16 01:4… 20724 species
#> 6 G1282142 URN:CornellLabOfOrnit… 2022-02-08 17:4… 20724 species
#> 7 G1362943 URN:CornellLabOfOrnit… 2018-12-25 18:4… 20786 species
#> 8 G144144 URN:CornellLabOfOrnit… 2019-04-10 10:2… 20674 species
#> 9 G151064 URN:CornellLabOfOrnit… 2022-01-30 08:2… 20724 species
#> 10 G161795 URN:CornellLabOfOrnit… 2021-04-16 06:0… 20724 species
#> # ℹ 388 more rows
#> # ℹ abbreviated name: ¹global_unique_identifier
#> # ℹ 43 more variables: taxon_concept_id <chr>, common_name <chr>,
#> # scientific_name <chr>, exotic_code <chr>, observation_count <chr>,
#> # breeding_code <chr>, breeding_category <chr>, behavior_code <chr>,
#> # age_sex <chr>, country <chr>, country_code <chr>, state <chr>,
#> # state_code <chr>, county <chr>, county_code <chr>, iba_code <chr>, …
# read a sampling event data file
x <- system.file("extdata/zerofill-ex_sampling.txt", package = "auk") %>%
read_sampling()